Este blog se gesta como parte de un proyecto de aprendizaje, con la intencion de compartir todo tipo de informacion referente a la informatica, su historia, y su uso en el aula. Pretendiendo que sea util a todo aquel que se muestre interesado, en saber un poco mas sobre la maquina que tenemos en frente generalmente todos los dias, y los diversos usos que podemos darle.
martes, 16 de agosto de 2011
miércoles, 27 de julio de 2011
martes, 26 de julio de 2011
La informatica y el hombre...
Se dice que estamos viviendo en la sociedad de la información en buena medida porque las computadoras, la microelectrónica y las telecomunicaciones, que no son otra cosa que medios de procesar y transmitir información, están por todas partes y cada día ocupan un lugar más importante en muchas actividades.
Sin embargo, nuestra vida cotidiana nos lleva a pensar que la informática —término con el que a partir de este momento designaremos a la unión de los aparatos de procesamiento de información y las telecomunicaciones— juega un papel central sólo entre los expertos en cómputo o entre quienes tienen un trato cotidiano con las telecomunicaciones. Pues bien, esto no es así, y en las siguientes líneas trataremos de demostrártelo.
Adivinanza:
¿Qué es algo de 2 centímetros de ancho, 5 milímetros de alto, y que se encuentra tanto en tu despertador como en el Voyager, en los semáforos o en los coches, en tu horno de microondas, en los cajeros automáticos, en el banco o en cualquier laboratorio de análisis clínicos?
Exacto, es el microchip, tal vez el dispositivo informático más famoso, y aunque a veces no nos demos cuenta de ello, este pequeño componente integrado por millones de circuitos microscópicos y conectado a través de las telecomunicaciones modernas, está en muchos de los aparatos que usamos y es el actor principal detrás de una gran cantidad de las acciones que realizamos cotidianamente.
Fabricacion de un microprocesador
¿Que es una computadora?
Se puede decir que la computadora es una máquina que puede ser programada de una inmensa variedad de maneras. Las principales características de una máquina de este tipo, son:
- Responder efectivamente a una serie de instrucciones específicas de una manera bien definida y esperada.
- Ejecutar una lista de instrucciones anteriormente definidas y grabadas, lo que se denomina “programa”.
Las computadoras modernas son de tipo digital y electrónicas. Están constituidas por partes electrónicas, transistores y circuitos integrados, lo que se denomina “hardware”. Las instrucciones y los datos se denominan “software”.
De manera genérica todos los ordenadores necesitan los siguientes componentes de hardware:
- La memoria: Es la parte de una computadora que permite almacenar, por lo menos temporalmente, los datos y los programas.
- Unidades de almacenamiento de datos (Massstorage device): Permite a la computadora retener una gran cantidad de datos. Unidades comunes de este tipo son los distintos discos del sistema, incluso los discos duros y los floppy (disquetes), así como las unidades de cinta y/o unidades de almacenamiento específicas como son los ZIP drivers y los Sparq entre otros.
- Unidad de entrada (Input device): Usualmente son el teclado y el ratón (mouse). Una unidad de entrada es el conducto mediante el cual se introducen los datos en una computadora.
- Unidad de salida (Output device): Hay varias, pero las más comunes son la pantalla y la impresora. Como unidad de salida se identifica cualquier unidad que nos permita ver lo que la computadora ha logrado.
- La unidad central de procesamiento (CPU): Se puede decir que es el corazón de la computadora. Es el componente que en realidad ejecuta las instrucciones.
Adicionalmente, existen otros componentes que facilitan a estas unidades elementales funcionar adecuadamente. Por ejemplo, cada computadora necesita un “BUS” que transmite los datos de una parte a otra.
Las computadoras se clasifican en 5 tipos según la potencia y la portabilidad de las mismas. Estas son:
- Computadora personal: Se trata de una computadora, naturalmente de un solo usuario, de tamaño y potencia considerablemente pequeños y está basada en un solo microprocesador. Dispone una unidad de entrada, normalmente el teclado, una unidad de salida, normalmente una pantalla (monitor) y una o más unidades de almacenamiento de datos.
- Estación de trabajo: Una computadora, también para un solo usuario, pero más potente que la personal. Dispone de un microprocesador mucho más potente y un monitor de muy alta calidad.
- Minicomputadora: Se trata de una computadora que puede soportar más que un usuario a la vez. Normalmente puede soportar a centenas de usuarios que usan el sistema al mismo tiempo.
- Mainframe o macrocomputadoras: Se trata de una computadora multi usuario, mucho más potente. Puede soportar centenas o miles de usuarios simultáneamente.
- Supercomputadora: Una computadora extremadamente rápida que puede procesar centenas de millones de instrucciones por minuto.
El camino de la informatica hasta nuestros dias... EN IMAGENES!
EL ABACO:
Es un objeto que sirve para facilitar cálculos sencillos (suma, resta, multiplicación y división) y operaciones aritméticas.
CALCULADORA DE PASCAL:
Es una de las primeras calculadoras mecánicas, que funcionaba a base de ruedas y engranes, fue inventada por Blaise Pascal en 1645.
CALCULADORA LEIBNIZ:
Estaba inspirada en la pascalina. Incorporaba innovaciones mecánicas como el tambor de dientes desiguales que permitiría multiplicar un número por rotaciones repetidas en manivela principal.
MAQUINA DE TELAR JACQUARD:
Es un artefacto el cual era controlado por tarjeta en las cuales los huecos estaban estratégicamente perforados
MAQUINA DIFERENCIAL DE BABBAGE:
Es un dispositivo de naturaleza mecánica para calcular e imprimir tablas de funciones. Más concretamente, calcula el valor numérico de una función polinómica sobre una progresión aritmética obteniendo una tabla de valores que se aproxima a la función real (basado en que cualquier función puede ser aproximada por polinomios).
MÁQUINA TABULADORA DE HOLLERITH:
Le dio paso al procesamiento de datos automatizado. Hollerith fundó una compañía de máquinas tabuladoras que posteriormente paso a ser “international business machines” o IBM. Con el cual había desarrollado un sistema de tarjetas perforadas eléctricas y basado en la lógica de boole, aplicándolo a una máquina tabuladora de su invención.
MÁQUINA DE RESOLVER ECUACIONES DIFERENCIALES DE VANNEVAR:
Fue un analizador diferencial fue una calculadora analógica que fue construida entre los años 1925 y 1931 en el Instituto Tecnológico de Massachusetts (MIT), bajo la dirección de Vannevar Bush. Físicamente estaba compuesta por amplificadores mecánicos, de los que se encontraban a su vez constituidos cada uno de ellos por un disco de cristal y una rueda metálica, y de esta forma el conjunto podía efectuar rotaciones por medio de motor eléctrico.
PRIMERA COMPUTADORA ELÉCTRICA DE ATANASOFF Y BERRY:
El Atanasoff Berry Computer (ABC) fue el primer computador electrónico y digital automático. Fue construido por el Dr. John Vincent Atanasoff con la ayuda de Clifford Edward Berry entre 1937 y 1942 en la 'Iowa State University', que entonces recibía el nombre de 'Iowa State College'.
COMPUTADORA ENIAC:
Esta computadora contaba con 17,468 tubos de vidrio al vacío, similares a los radio-tubos, y que fuera empleada por el ejército exclusivamente para cálculos balísticos o la trayectoria de los misiles. Fue construida en 1946 en la Universidad de Pensylvania por John Mauchly y J. Presper Eckert. Medía 2.40 de ancho por 30 metros de largo y pesaba 80 toneladas.La ENIAC podía resolver 5,000 sumas y 360 multiplicaciones por segundo, pero su programación era terriblemente tediosa y debía cambiársele de tubos continuamente.
COMPUTADORA UNIVAC:
A fines de esta generación, entre 1951 y 1958 Mauchly y Eckert construyeron la famosa serie UNIVAC, la misma que fue diseñada con propósitos de uso general y universal pues ya podía procesar problemas alfanuméricos y de datos.Las tarjetas perforadas todavía conformaban el mayor recurso de alimentación de datos y toda la programación era muy compleja pues se realizaba en lenguaje de máquina.
Lo más significativo de esta generación fue el uso de los tubos al vacío.
APPLE I Y II:
La familia de ordenadores Apple II fue la primera serie de microordenadores de producción masiva hecha por la empresa Apple II Computer entre finales de los años 1970 y mediados de los años 1980.
COMPUTADORA 1990
COMPUTADORA ACTUAL
Generaciones...
La primera generación
· El Univac 1 viene a marcar el comienzo de lo que se llama la primera generación. Los ordenadores de esta primera etapa se caracterizan por emplear el tubo de vacío como elemento fundamental de circuito. Son máquinas grandes pesadas y con unas posibilidades muy limitadas. El tubo de vacío es un elemento que tiene un elevado consumo de corriente genera bastante calor y tiene una vida media breve. Hay que indicar que a pesar de esto no todos los ordenadores de la primera generación fueron como el Eniac las nuevas técnicas de fabricación y el empleo del sistema binario llevaron a máquinas con unos pocos miles de tubos de vacío.
· La segunda generación
· En 1958 comienza la segunda generación cuyas máquinas empleaban circuitos transistorizados. El transistor es un elemento electróni-co que permite reemplazar al tubo con las siguientes ventajas: su consumo de corriente es mucho menor con lo que también es menor su producción de calor. Su tamaño es también mucho menor. Un transis-tor puede tener el tamaño de una lenteja mientras que un tubo de vacío tiene un tamaño mayor que el de un cartucho de escopeta de caza. Esto permite una drástica reducción de tamaño. Mientras que las tensiones de alimentación de los tubos estaban alrededor de los 300 voltios las de los transistores vienen a ser de 10 voltios con lo que los demás elementos de circuito también pueden ser de menor tamaño al tener que disipar y soportar tensiones mucho menores. El transistor es un elemento constituido fundamentalmente por silicio o germanio. Su vida media es prácticamente ilimitada y en cualquier caso muy superior a la del tubo de vacío. Como podemos ver el simple hecho de pasar del tubo de vacío al transistor supone un gran paso en cuanto a reducción de tamaño y consumo y aumento de fiabilidad. Las máquinas de la segunda generación emplean además algunas técnicas avanzadas no sólo en cuanto a electrónica sino en cuanto a informática y proceso de datos como por ejemplo los lenguajes de alto nivel.
· La tercera generación
· En 1964 la aparición del IBM 360 marca el comienzo de la tercera generación. Las placas de circuito impreso con múltiples componen-tes pasan a ser reemplazadas por los circuitos integrados. Estos elementos son unas plaquitas de silicio llamadas chips sobre cuya superficie se depositan por medios especiales unas impurezas que hacen las funciones de diversos componentes electrónicos. Así pues un puñado de transistores y otros componentes se integran ahora en una plaquita de silicio. Aparentemente esto no tiene nada de especial salvo por un detalle; un circuito integrado con varios centenares de componentes integrados tiene el tamaño de una moneda.
· Así pues hemos dado otro salto importante en cuanto a la reducción de tamaño. El consumo de un circuito integrado es también menor que el de su equivalente en transistores resistencias y demás componen-tes. Además su fiabilidad es también mayor.
· En la tercera generación aparece la multiprogramación el teleproceso se empieza a generalizar el uso de minicomputadores en los negocios y se usan cada vez más los lenguajes de alto nivel como Cobol y Fortran.
· La cuarta generación
· La aparición de una cuarta generación de ordenadores hacia el comienzo de los años setenta no es reconocida como tal por muchos profesionales del medio para quienes ésta es sólo una variación de la tercera. Máquinas representativas de esta generación son el IBM 370 y el Burroughs. Las máquinas de esta cuarta generación se caracterizan por la utilización de memorias electrónicas en lugar de las de núcleos de ferrita.
· Estas representan un gran avance en cuanto a velocidad y en especial en cuanto a reducción de tamaño. En un chip de silicio no mayor que un centímetro cuadrado caben 64.000 bits de información. En núcleos de ferrita esa capacidad de memoria puede requerir cerca de un litro en volumen.
· Se empieza a desechar el procesamiento batch o por lotes en favor del tiempo real y el proceso interactivo. Aparecen innumerables lenguajes de programación. Las capacidades de memoria empiezan a ser enormemente grandes. En esta etapa cobran gran auge los minicomputadores. Estos son maquinas con un procesador de 16 bits una memoria de entre 16 32 KB y un precio de unos pocos millones.
· La quinta generación: los microprocesadores
· Posteriormente hacia finales de los setenta aparece la que podría ser la quinta generación de ordenadores. Se caracteriza por la aparición de los microcomputadores y los ordenadores de uso personal. Estas máquinas se caracterizan por llevar en su interior un microprocesador circuito integrado que reúne en un sólo chip de silicio las principales funciones de un ordenador.
· Los ordenadores personales son equipos a menudo muy pequeños no permiten multiproceso y suelen estar pensados para uso doméstico o particular. Los microcomputadores si bien empezaron tímidamente como ordenadores muy pequeñitos rápidamente han escalado el camino superando a lo que hace 10 años era un minicomputador.
Sus origenes...
El dispositivo de calculo más antiguo que se conoce es el ábaco.
Su nombre viene del griego abakos que significa superficie plana. Se sabe que los griegos empleaban tablas para contar en el siglo V antes de Cristo o tal vez antes. El ábaco tal como lo conocemos actualmente esta constituido por una serie de hilos con cuentas ensartadas en ellos. En nuestro país este tipo de ábaco lo hemos visto todos en las salas de billar.
· El primer calculador mecánico apareció en 1642 tan sólo 25 años después de que Napier publicase una memoria describiendo su máquina. El artífice de esta máquina fue el filósofo francés Blaise Pascal (1.623-1.662) en cuyo honor se llama Pascal uno de los lenguajes de programación que más impacto ha causado en los últimos años. · A los 18 años Pascal deseaba dar con la forma de reducir el trabajo de cálculo de su padre que era un funcionario de impuestos. La calculadora que inventó Pascal tenía el tamaño de un cartón de tabaco y su principio de funcionamiento era el mismo que rige los cuentakilómetros de los coches actuales; una serie de ruedas tales que cada una de las cuales hacía avanzar un paso a la siguiente al completar una vuelta. Las ruedas estaban marcadas con números del 0 al 9 y había dos para los decimales y 6 para los enteros con lo que podía manejar números entre 000.000 01 y 999.999 99.
· Las ruedas giraban mediante una manivela con lo que para sumar o restar lo que había que hacer era girar la manivela correspondiente en un sentido o en otro el número de pasos adecuado.
· Leibnitz (1646-1716) fue uno de los genios de su época; a los 26 años aprendió matemáticas de modo autodidacta y procedió a inventar el cálculo. Inventó una máquina de calcular por la simple razón de que nadie le enseñó las tablas de multiplicar.
· La máquina de Leibnitz apareció en 1672; se diferenciaba de la de Pascal en varios aspectos fundamentales el más importante de los cuales era que podía multiplicar dividir y obtener raíces cuadra-das.
· Leibnitz propuso la idea de una máquina de cálculo en sistema binario base de numeración empleada por los modernos ordenadores actuales. Tanto la máquina de Pascal como la de Leibnitz se encontraron con un grave freno para su difusión: la revolución industrial aún no había tenido lugar y sus máquinas eran demasiado complejas para ser realizadas a mano. La civilización que habría podido producir las en serie estaba todavía a más de 200 años de distancia.
· Entre 1673 y 1801 se realizaron algunos avances significativos el más importante de los cuales probablemente fue el de Joseph Jacquard (1.752-1.834) quien utilizó un mecanismo de tarjetas perforadas para controlar el dibujo formado por los hilos de las telas confeccionadas por una máquina de tejer.
· Hacia 1725 los artesanos textiles franceses utilizaban un mecanismo de tiras de papel perforado para seleccionar unas fichas perforadas las que a su vez controlaban la máquina de tejer.
· Jacquard fue el primero en emplear tarjetas perforadas para almacenar la información sobre el dibujo del tejido y además controlar la máquina.
· La máquina de tejer de Jaquard presentada en 1.801 supuso gran éxito comercial y un gran avance en la industria textil. · La antesala de la informática.
· Aunque hubo muchos precursores de los actuales sistemas informáticos para muchos especialistas la historia empieza con Charles Babbage matemático e inventor inglés que al principio del siglo XIX predijo muchas de las teorías en que se basan los actuales ordenadores. Desgraciadamente al igual que sus predeceso-res vivió en una época en que ni la tecnología ni las necesidades estaban al nivel de permitir la materialización de sus ideas.
· En 1822 diseñó su máquina diferencial para el cálculo de polinomios. Esta máquina se utilizó con éxito para el cálculo de tablas de navegación y artillería lo que permitió a Babbage conseguir una subvención del gobierno para el desarrollo de una segunda y mejor versión de la máquina.
· Durante 10 años Babbage trabajó infructuosamente en una segunda máquina sin llegar a conseguir completarla y en 1833 tuvo una idea mejor.
· Mientras que la máquina diferencial era un aparato de proceso único Babbage decidió construir una máquina de propósito general que pudiese resolver casi cualquier problema matemático. Todas estas máquinas eran por supuesto mecánicas movidas por vapor. De todas formas la velocidad de cálculo de las máquinas no era tal como para cambiar la naturaleza del cálculo además la ingeniería entonces no estaba lo suficientemente desarrollada como para permitir la fabricación de los delicados y complejos mecanismos requeridos por el ingenio de Babbage. La sofisticado organización de esta segunda máquina la máquina diferencial según se la llamó es lo que hace que muchos consideren a Babbage padre de la informática actual.
· Como los modernos computadores la máquina de Babbage tenía un mecanismo de entrada y salida por tarjetas perforadas una memoria una unidad de control y una unidad aritmético-lógica. Preveía tarjetas separadas para programa y datos. Una de sus característi-cas más importantes era que la máquina podía alterar su secuencia de operaciones en base al resultado de cálculos anteriores algo fundamental en los ordenadores modernos. la máquina sin embargo nunca llegó a construirse. Babbage no pudo conseguir un contrato de investigación y pasó el resto de su vida inventando piezas y diseñando esquemas para conseguir los fondos para construir la máquina. Murió sin conseguirlo.
· Aunque otros pocos hombres trataron de construir autómatas o calculadoras siguiendo los esquemas de Babbage su trabajo quedo olvidado hasta que inventores modernos que desarrollaban sus propios proyectos de computadores se encontraron de pronto con tan extraordinario precedente.
· Otro inventor digno de mención es Herman Hollerith. A los 19 años. en 1879 fue contratado como asistente en las oficinas del censo norteamericano que por aquel entonces se disponía a realizar el recuento de la población para el censo de 1880. Este tardó 7 años y medio en completarse manualmente. Hollerith fue animado por sus superiores a desarrollar un sistema de cómputo automático para futuras tareas.
· El sistema inventado por Hollerith utilizaba tarjetas perforadas en las que mediante agujeros se representaba el sexo la edad raza etc En la máquina las tarjetas pasaban por un juego de contactos que cerraban un circuito eléctrico activándose un contador y un mecanismo de selección de tarjetas. Estas se leían a ritmo de 50 a 80 por minuto.
· Desde 1880 a 1890 la población subió de 5O a 63 millones de habitantes aun así el censo de 1890 se realizó en dos años y medio gracias a la máquina de Hollerith.
· Ante las posibilidades comerciales de su máquina Hollerith dejó las oficinas del censo en 1896 para fundar su propia Compañía la Tabulating Machine Company. En 1900 había desarrollado una máquina que podía clasificar 300 tarjetas por minuto una perforadora de tarjetas y una máquina de cómputo semiautomática.
· En 1924 Hollerith fusionó su compañía con otras dos para formar la Internacional Bussines Machines hoy mundialmente conocida como IBM.
· El nacimiento del ordenador actual.
· Ante la necesidad de agilizar el proceso de datos de las oficinas del censo se contrató a James Powers un estadístico de Nueva Jersey para desarrollar nuevas máquinas para el censo de 1.910. Powers diseñó nuevas máquinas para el censo de 1.910 y de modo similar a Hollerith decidió formar su propia compañía en 1.911; la Powers Accounting Machine Company que fue posteriormente adquirida por Remington Rand la cual a su vez se fusionó con la Sperry Corpora-tion formando la Sperry Rand Corporation. · John Vincent Atanasoft nació en 1903 su padre era un ingeniero eléctrico emigrado de Bulgaria y su madre una maestra de escuela con un gran interés por las matemáticas que transmitió a su hijo. · Atanasoff se doctoró en física teórica y comenzó a dar clases en lowa al comienzo de los años 30. Se encontró con lo que por entonces eran dificultades habituales para muchos físicos y técnicos; los problemas que tenían que resolver requerían una excesiva cantidad de cálculo para los medios de que disponían. Aficionado a la electrónica y conocedor de la máquina de Pascal y las teorías de Babbage Atanasoff empezó a considerar la posibilidad de construir un calculador digital. Decidió que la máquina habría de operar en sistema binario hacer los cálculos de modo totalmente distinto a como los realizaban las calculadoras mecánicas e incluso concibió un dispositivo de memoria mediante almacenamiento de carga eléctrica. Durante un año maduró el proyecto y finalmente solicitó una ayuda económica al Consejo de Investigación del Estado de lowa. Con unos primeros 650 dólares contrató la cooperación de Clifford Berry estudiante de ingeniería y los materiales para un modelo experimental. Posteriormente recibieron otras dos donaciones que sumaron 1460 dólares y otros 5000 dólares de una fundación privada.
Este primer aparato fue conocido como ABC Atanasoff- Berry-Computer.
· En diciembre de 1940 Atanasoff se encontró con John Mauchly en la American Association for the Advancement of Science (Asociación Americana para el Avance de la Ciencia) abreviadamente AAAS. Mauchly que dirigía el departamento de física del Ursine College cerca de Filadelfia se había encontrado con los mismos problemas en cuanto a velocidad de cálculo que Atanasoff y estaba convencido de que habría una forma de acelerar el cálculo por medios electróni-cos. Al carecer de medios económicos construyó un pequeño calcula-dor digital y se presentó al congreso de la AAAS para presentar un informe sobre el mismo. A raíz de aquello Atanasoff y Maunchly tuvieron un intercambio de ideas que muchos años después ha desembocado en una disputa entre ambos sobre la paternidad del computador digital.
· En 1941 Maunchly se matriculo en unos cursos sobre ingeniería eléctrica en la escuela Moore de Ingeniería donde conoció a un instructor de laboratorio llamado J. Presper Eckert.. Entre ambos surgió una compenetración que les llevaría a cooperar en un interés común: el desarrollo de un calculador electrónico. El entusiasmo que surgió entre ambos llegarón a Maunchly a escribir a Atanasoff solicitándole su cooperación para construir un computador como el ABC en la escuela Moore.
· Atanasoff prefirió guardar la máquina en un cierto secreto hasta poder patentarla; sin embargo nunca llegó a conseguirlo. Maunchiy fue más afortunado. La escuela Moore trabajaba entonces en un proyecto conjunto con el ejército para realizar unas tablas de tiro para armas balísticas.
· La cantidad de cálculos necesarios era inmensa tardándose treinta días en completar una tabla mediante el empleo de una máquina de cálculo analógica. Aun así esto era unas 50 veces más rápido de lo que tardaba un hombre con una sumadora de sobremesa.
· El 9 de abril de 1943 se autorizó a los dos hombres a iniciar el desarrollo del proyecto. Se le llamó ENIAC (Electronic Numerical integrator and Computer). El presupuesto inicial era de 150.000 dólares) cuando la máquina estuvo terminada el costo total había sido de 486.804 22 dólar.
· El ENIAC tenía unos condensadores 70 000 resistencias 7.500 interruptores y 17.000 tubos de vacío de 16 tipos distintos funcionando todo a una frecuencia de reloj de 100.000 Hz. Pesaba unas 30 toneladas y ocupaba unos 1.600 metros cuadrados. Su consumo medio era de unos 100.000 vatios (lo que un bloque de 50 viviendas) y necesitaba un equipo de aire acondicionado a fin de disipar el gran calor que producía.
· Tenía 20 acumuladores de 10 dígitos era capaz de sumar restar multiplicar y dividir; además tenía tres tablas de funciones. La entrada y la salida de datos se realizaba mediante tarjetas perforadas.
· En un test de prueba en febrero de 1946 el Eniac resolvió en 2 horas un problema de física nuclear que previamente habría requerido 100 años de trabajo de un hombre. Lo que caracterizaba al ENIAC como a los ordenadores modernos no era simplemente su velocidad de cálculo sino el hecho de que combinando operaciones permitía realizar tareas que antes eran imposibles.
· Entre 1939 y 1944 Howard Aiken de la universidad de Harvard en colaboración con IBM desarrolló el Mark 1 también conocido como calculador Automático de Secuencia Controlada. Este fue un computador electromecánico de 16 metros de largo y más de dos de alto. Tenía 700.000 elementos móviles y varios centenares de kilómetros de cables. Podía realizar las cuatro operaciones básicas y trabajar con información almacenada en forma de tablas.
· Operaba con números de hasta 23 dígitos y podía multiplicar tres números de 8 dígitos en 1 segundo. El Mark 1 y las versiones que posteriormente se realizaron del mismo tenían el mérito de asemejarse considerablemente al tipo de máquina ideado por Babbage aunque trabajaban en código decimal y no binario.
El avance que estas máquinas electromecánicas supuso fue rápidamente ensombrecido por el Eniac con sus circuitos electrónicos.
· En 1946 el matemático húngaro John Von Neumann propuso una versión modificada del Eniac; el Edvac (Electronic Discrete Variable Automatic Computer) que se construyó en 1952. Esta máquina presentaba dos importantes diferencias respecto al Eniac: En primer lugar empleaba aritmética binaria lo que simplificaba enormemente los circuitos electrónicos de cálculo.
· En segundo lugar permitía trabajar con un programa almacenado. El Eniac se programaba enchufando centenares de clavijas y activando un pequeno numero de interruptores. Cuando había que resolver un problema distinto era necesario cambiar todas las conexiones proceso que llevaba muchas horas.
· Von Neumann propuso cablear una serie de instrucciones y hacer que éstas se ejecutasen bajo un control central. Además propuso que los códigos de operación que habían de controlar las operaciones se almacenasen de modo similar a los datos en forma binaria.
· De este modo el Edvac no necesitaba una modificación del cableado para cada nuevo programa pudiendo procesar instrucciones tan deprisa como los datos. Además el programa podía modificarse a sí mismo ya que las instrucciones almacenadas como datos podían ser manipuladas aritméticamente.
· Eckert y Mauchly tras abandonar la universidad fundaron su propia compañía la cual tras diversos problemas fue absorbida por Remington Rand. El 14 de junio de 1951 entregaron su primer ordenador a la Oficina del Censo el Univac-I.
· Posteriormente aparecería el Univac-II con memoria de núcleos magnéticos lo que le haría claramente superior a su antecesor pero por diversos problemas esta máquina no vio la luz hasta 1957 fecha en la que había perdido su liderazgo en el mercado frente al 705 de IBM.
A partir de entonces fueron apareciendo progresivamente más y más maquinas. Veamos las etapas que diferencian unas máquinas de otras según sus características. Cada etapa se conoce con el nombre de generación.
El camino de la informatica hasta nuestros dias...
Y para comenzar, ¿qué es la informática?
Si buscas el concepto en un diccionario, muy probablemente encuentres una definición según la cual computación e informática son prácticamente lo mismo.
Por ejemplo, el diccionario de la Real Academia de la Lengua Española señala que informática es el "conjunto de conocimientos científicos y técnicas que hacen posible el tratamiento automático de la información por medio de ordenadores (computadoras)". Es más, en el mismo diccionario se apunta que "informática" es la palabra que se usa en América para hablar de "computación".
Por ejemplo, el diccionario de la Real Academia de la Lengua Española señala que informática es el "conjunto de conocimientos científicos y técnicas que hacen posible el tratamiento automático de la información por medio de ordenadores (computadoras)". Es más, en el mismo diccionario se apunta que "informática" es la palabra que se usa en América para hablar de "computación".
¿Entonces, informática es computación?
Sí, pero es más que eso. La definición que propone la Organización de las Naciones Unidas para la Educación, la Ciencia y la Cultura (UNESCO, por sus siglas en inglés) es mucho más amplia, al referirse a la informática como la ciencia que tiene que ver con los sistemas de procesamiento de información y sus implicaciones económicas, políticas y socioculturales.
Vayamos por partes…; en primer lugar, ¿qué es información?, y después, ¿qué debemos entender por "procesamiento de información"?
Vayamos por partes…; en primer lugar, ¿qué es información?, y después, ¿qué debemos entender por "procesamiento de información"?
El concepto de información es muy reciente y además sumamente sencillo. Fue desarrollado en la década de los 40's por el matemático norteamericano Claude Shannon, para referirse a todo aquello que está presente en un mensaje o señal cuando se establece un proceso de comunicación entre un emisor y un receptor. Así, cuando dos personas hablan, intercambian información; cuando ves una película, recibes información; es más, al probar una galleta tu sentido del gusto recaba información sobre el sabor y la consistencia del bocado. La información puede entonces encontrarse y enviarse en muchas formas, a condición de que quien la reciba pueda interpretarla.
Procesar información implica el almacenamiento, la organización y, muy importante, la transmisión de la misma. Para ello, en la informática intervienen varias tecnologías; en términos generales, podemos decir que son dos sus pilares: la computación y la comunicación; es decir, en lo que hoy conocemos como informática confluyen muchas de las técnicas y de las máquinas que el hombre ha desarrollado a lo largo de la historia para apoyar y potenciar sus capacidades de memoria, de pensamiento y de comunicación.
Cuando Robinson Crusoe marcaba en el tronco de un árbol una raya por cada día que pasaba en su isla desierta; lo hacía para no perder la cuenta, es decir, para apoyar a su memoria. Cuando tú utilizas una calculadora para sumar dos cantidades, auxilias a tu pensamiento. Cuando el hombre que está arriba de un ring anuncia con un altavoz a los boxeadores, está potenciando su capacidad de comunicarse con palabras. Y ahora, en este momento en el que lees estás líneas en la pantalla de tu computadora, estás empleando una tecnología informática por excelencia: Internet, en la que interviene no sólo el lenguaje escrito sino también el teléfono (una máquina de comunicar) y tu computadora (que incluye apoyos tanto para tu memoria como para tu pensamiento).
Sintetizando, la informática es el producto del encuentro de dos líneas tecnológicas: el de las máquinas de comunicar y el de las computadoras. Si bien el término Informática surgió hace poco más de medio siglo, cuando el propio Shannon desarrolló la Teoría de la Información, apostado en los terrenos de la lógica matemática y los albores de la computación moderna. Más adelante veremos como sus orígenes se remontan a los de la humanidad.
Suscribirse a:
Entradas (Atom)